If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+72x-72=0
a = 18; b = 72; c = -72;
Δ = b2-4ac
Δ = 722-4·18·(-72)
Δ = 10368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10368}=\sqrt{5184*2}=\sqrt{5184}*\sqrt{2}=72\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-72\sqrt{2}}{2*18}=\frac{-72-72\sqrt{2}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+72\sqrt{2}}{2*18}=\frac{-72+72\sqrt{2}}{36} $
| 1/2(7x-6)=16 | | 12x+8x+12x=88 | | 4-5n=3+7n | | 6-6x2=3x | | 2a+10=-18 | | 3y-6=29 | | 2√5x+1√2=5√6 | | 20x-15x+2=32x-5 | | 20+15x+2=32x-5 | | X/10+x/5=9 | | 0.4*x=0.5 | | 6y-9+2y+5=-8y+17+4y | | 3^n=17 | | 20x-15+2=32x-5 | | d+2=3÷6 | | 2x+3=5x+14 | | d+2÷3=6 | | 5x+3=-7x-21 | | g+5=-2 | | x+16x120=180 | | 1/4(12x+24)-9=1 | | 3(r+1.6)−8r=9.1 | | 42-2x-3=6x+20-5x | | 2×+3y=23 | | 3x+5x-2x=12 | | 416=2x^2–6x | | d-7=11 | | R^2+6r-11=0 | | 7n+28=6n+34 | | 36x=48*81 | | -5(о,8z-1,2)=-z+7,2 | | 36*48=81x |